
Leveraging an Active Prism to Enhance Feature Detection
in Event Cameras

Botao He 3, Ze Wang 1,2, Yuan Zhou 1,2, Jingxi Chen 3, Chahat Deep Singh 3,
Cornelia Fermüller 3, Yiannis Aloimonos 3, Chao Xu 1,2, and Fei Gao1,2

I. INTRODUCTION

Event cameras are bio-inspired vision sensors that were
designed to capture motion information. Instead of recording
image intensity, they record intensity change information
only. Generally, assuming no significant changes in the scene
illumination, the image intensity changes are due to the 3D
motion of either the scene objects or the camera. For this
reason, event cameras recently have been used in classic
applications of visual motion processing, such as SLAM [1]
and Structure from Motion [2], motion segmentation [3], [4],
gesture recognition [5], human pose estimation [6], as well
as niche areas such as space [7] or microscopy [8].

Although capturing motion information (assuming con-
stant illumination) is beneficial for many application sce-
narios, it comes with a cost. Specifically, the events gener-
ated by event cameras are dependent on the motion (either
camera ego-motion or object motion). This dependency on
the motion will make the features in the generated events
keep changing as the motion of the objects or the camera is
changing. We call this effect ”unstable event features”. As
an example, if a square-like object is translating horizontally
while observed with a static event camera, what we will see
is that its top and bottom horizontal edges will not generate
any events during this horizontal translation. Suppose now
that the square changes its translational motion from the
horizontal to the vertical direction. In this case, the events
of horizontal edges will show up but the previously visible
events for the vertical edges will disappear. This general phe-
nomenon of ”unstable event features” will create problems
for applications like feature tracking. Lines which are in the
direction of motion will not create events.

In the past decade, there have been many works trying to
eliminate this problem through algorithms or post-processing
approaches. They either associate events with previously
maintained data [6], [9] or combine the event camera with
a standard camera [10], [11]. The former techniques usually
employ 2D/3D event maps or reconstructed intensity images
to maintain more information, and minimize the reprojection

† This work is finished during the first author’s internship at Huzhou
Institute of Zhejiang University

1 State Key Laboratory of Industrial Control Technology, Institute of
Cyber-Systems and Control, Zhejiang University, Hangzhou, 310027, China.
Email:{wangze0527, yzhou, cxu, fgaoaa}@zju.edu.cn.

2 Huzhou Institute of Zhejiang University, Huzhou, 313000, China.
3 Perception and Robotics Group, University of Maryland Insti-

tute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742, USA. Email:{botao, ianchen, chahat, fer,
jyaloimo}@umd.edu

error to optimize correspondence between events. However,
these methods also suffer from noise, which is common when
the event camera moves slowly or remains static. In the latter
case, although the texture is much more stable by introducing
standard cameras, it also leads to robustness issues due to
the poor performance of standard cameras in high dynamic
range, and dark scenarios and when there is motion blur.

All of the above methods try to solve the problem of
unstable event features on the software side. The problem
however is fundamentally introduced by sensor character-
istics. Therefore, these works do not solve the problem at
its root: indeed, there is no theory on how to complete or
recover the missing information. To fundamentally address
this problem, we need to physically introduce an additional
motion to the event camera. This can only be done at the
hardware level, and there are some previous works taking
this perspective [12], [13] by physically adding random or
unobserved motion (like vibration) to the event camera. Such
approaches can mitigate the dependency of event generation
on motion but they also introduce problems for the quality of
the generated events because the unobserved motion cannot
be compensated, which causes severe motion blur.

This report identifies and resolves these fundamental chal-
lenges by physically adding an active micro-motion, which is
controllable, observable, and omni-directional. An overview
of the proposed system is shown in Fig. 1. Specifically,
our proposed approach is a hardware design combined
with a software solution. Inspired by rotating wedge prism
mechanism [14], the hardware is a rotating wedge prism in
front of an event camera, with the rotation controlled by
a servo actuator. In this design, we can track the rotating
motion of the motor and analyze the refraction of the rotating
wedge prism such that our introduced motion now becomes
observable, details in II-A.

In the software solution, we first control the actuator to
drive the rotation of the wedge prism. Then, we correspond
the event stream with position feedback data by synchro-
nizing the servo actuator with the timestamps of the event
camera. After that, we perform motion compensation by
warping the events with the rotational motion and restoring
the quality of our event data. More details can be found in
II-B and II-C.

The output of our system is a new event stream, where
the motion trajectory induced by the wedge prism has been
compensated for. The new event stream is useful for visual
recognition tasks and for feature tracking.

The main components in this work can be summarized as:



Wedge Prism

MCU (STM32-F4)

Event Camera
(iniVation 

DVXplorer)

Servo Actuator
(DJI M2006)

Hardware

Servo
Actuator

Wedge
Prism

Event
Camera

Generation

Rotating Wedge Prism

Compensation

Software

(a) (b)

(c)

(d)

𝑊𝑊

Fig. 1. (a): Hardware components of our texture-enhanced event camera. (b): Hardware Design. (c): Graphical demonstration of the micro-motion
generating process. (d): System overview.

• A novel event-based hardware solution utilizing a rotat-
ing wedge prism to account for the fundamental motion
dependency problem in event-based vision.

• A motion generation method that can generate control-
lable, observable, and omni-directional motion, which
can actively maintain all environmental boundary infor-
mation.

• A motion compensation method that can compensate
the actively introduced motion and output a texture-
enhanced event stream that is compatible with existing
event-based algorithms.

II. SYSTEM DESIGN

In this section, we present the design of our texture-
enhanced event camera. The system description is divided
into two parts: the hardware design, and the software so-
lution, as shown in Fig. 1(d). For the hardware design,
we demonstrate the mechanical structure of the proposed
system. In the software part, we introduce the rotation
generation process and then demonstrate the calibration and
compensation procedure with some experimental results.

A. Hardware Design

The hardware design, illustrated in Fig. 1(a) and Fig.
1(b), consists of three parts: the optical deflector module,
the actuator module, and the camera module with the mi-
cro computing unit (MCU). The optical deflector module,
marked as green in Fig. 1(a) and 1(b), is a wedge prism
that deflects the incoming light to a fixed angle along
xw, where xw, yw, zw denote the corresponding axis of the
wedge-prism frame W ∈ S2 (shown in Fig. 1(c)). The
actuator module, marked as yellow, is composed of a servo
actuator that can provide absolute position feedback and
a transmission mechanism. It is used to drive the optical
deflector module to rotate along the zc, where xc, yc, zc
denote the corresponding axis of the camera frame C ∈ S2
(shown in Fig. 1(c)). The camera module, marked as pink, is
a standard event camera that supports time synchronization
with external sensors. The MCU, marked as blue, accounts
for controlling the rotating speed, receiving position feedback
and synchronizing timestamps between the event camera and
the actuator’s encoder.



Pixel index (x)

Pi
xe

l i
nd

ex
 (y

)

Fig. 2. The trajectories in the image plane, which are induced by the
changing incoming light.

𝜃𝜃0
𝜃𝜃1

𝜃𝜃2

𝛿𝛿𝛿𝛿
𝛿𝛿

𝜃𝜃0
𝜃𝜃1

𝜃𝜃2

𝛿𝛿0𝛿𝛿1
𝛿𝛿2

(a) (b)

Fig. 3. Illustration of the fitting process in the calibration procedure. (a):
The trajectory induced by deflecting an incoming light ray over time looks
approximately like a circle in S2 with a slightly varying distance δi between
the original and deflected ray. (b): A circle in S2 is fit to the trajectory, where
each point has the same distance δ from the original direction.

B. Micro-motion Generation

In the proposed system to generate additional events on
contours parallel to the motion of the camera and on the
edges of the static background, we utilize the working
principle of the wedge-prism deflector[15]. It actively adjusts
the direction of the incoming light, as illustrated in Fig.
1(c). At the beginning of the procedure, the wedge prism
has a certain orientation and deflects the incoming light at
fixed angle δ0 as described in Section. II-A. Then during
operation, the actuator module drives the optical deflector
module to rotate along the zc to make the incoming light
constantly change its deflection. This way, the incoming light
continually generates events because it creates a motion on
the image plane with a circle-like trajectory, as shown in Fig.
1(c). As a result, there appears to be continuously changing
2d rotational motion induced in the image plane. The induced
motion patterns are circle-like trajectories. Because the image
motion is in all directions in the image plane, the output
event stream contains all the information of boundaries in
the scene, as shown in Fig. 4 and Software-Generation part
in Fig. 1(d).

C. Micro-motion Calibration and Compensation

By rotating the wedge prism, a saccade-like motion is
generated on the image plane, resulting in object boundaries

Ti
m

e
Ti

m
e

(a) (b)

(c) (d)

Fig. 4. Illustration of the micro-motion compensation. (a) and (b): 2-D
edge map and 3-D event stream before compensation. (c) and (d): 2-D edge
map and 3-D event stream after compensation.

stably maintained in the event stream. However, in the event
slices (i.e. the images created by binning the events over a
small time interval), the boundaries are blurry due to the
self-motion of the wedge prism. To get sharp edges, the
events triggered by the same incoming light ray direction
should be moved to the same pixel. To achieve this, we first
need to calibrate that is find the rotation of the wedge at
the beginning of the recording, and then compensate for the
spatial displacement of the events due to the wedge motion.

Fig.2 shows that the trajectory of each incoming light
is like an ellipse on the image plane. By projecting each
event to the camera frame C ∈ S2 using camera intrinsic
matrix K, the ellipse-like trajectory on the image plane can
be transformed to circle-like trajectory in C, as shown in Fig.
3(a). As shown with examples in Appendix. A the error due
to this approximation is not significant.

In a calibration procedure, we estimate the two parameters:
δ, the radius of the circle, and θ0, the offset between the
angle of the wedge prism at the start and a fiducial position
of the servo actuator. We estimate these angles in an iterative
procedure by aligning events collected over two seconds
using a sharpness measure [16]. As the initial value, we use
the refraction angle of parallel light by the corresponding
wedge-prism for δ, and the zero-position of the servo actuator
for θ0.

In the current implementation, we use a simple measure
for alignment: we minimize the number of pixels, which
have a value above a threshold. In more detail, we transfer
the events from the spatial-temporal domain (x, y, t) to the
(x, y, θ) domain by synchronizing the events’ timestamp
with the wedge prism’s angular position. Then, we warp
all events back to θ0 to compensate for the rotation. The
warping function is described as Π : R3 −→ R3, which warps
each event’s position on the image plane as Π(x, y, θ) :
(x, y, θ + θ0) −→ (x′, y′, θ0). The warping function can be



represented as:

e′i = Π{(x, y, θ + θ0)} = (x′, y′, θ0). (1)

From the warped events E′ = e′i(i = 1, 2...), we construct
the event-count image γ, with each pixel encoding the
number of events mapped to it in E′:

γi,j =
∑
ei∈E′

{
1, (x, y) = (i, j);

0, else.
. (2)

Now, we normalize γ to (0, 1) and construct a new normal-
ized event-count image Γ:

Γ = Normalize(γ) ∈ (0, 1). (3)

Then, the cost J is represented by thresholding Γ:

J =
∑

(i,j)∈Γ

{
1,Γi,j ≥ τthreshold,

0, else.
, (4)

with τthreshold being a specified threshold. The optimization
problem can be expressed as:

min
δ,θ0

J (5)

Because the hardware setup is fixed and known, the optimal
value δ∗ and θ∗0 will not differ much from the initial guess
δ and θ0, which means it does not take much computational
cost to find the optimal solution pair by brute force search
in specified solution space.

After calibrating the rotation parameters, we can compen-
sate for the microsaccade using the same warping function
Π in real-time. The experimental results are shown in Fig. 4.
As a result, the compensation algorithm outputs a new com-
pensated event stream for further processing, like feature
detection.

III. EXPERIMENT AND EVALUATION

A. Evaluation for Feature Detection Application

This experiment is designed to demonstrate the superiority
of the proposed system in the feature detection task, which is
one of the most representative tasks in low-level vision, and
also a basic building block for various robotics applications.

In the experiment, we use the eFAST[17] method to detect
corner features directly in the event stream. The refraction
angle of the wedge prism is set to 0.5 degrees, because when
the refraction angle becomes larger, the number of events per
one rotation period also becomes larger, and the difficulty for
compensation also increases since the error is also amplified.
Choosing 0.5 degrees is a good balance between event
density and compensation performance. The rotation speed
is set to 12.5 hz, which is also a good balance between
system performance and accuracy, because a higher speed
generates more environmental information, while introducing
more compensation errors due to time synchronization.

The result is illustrated in Fig. 5, in which the camera
is moving along its X-axis. Fig. 5(a) shows that from the
standard event camera output, we cannot detect the corner
features robustly. The reason is that there is not sufficient

Ti
m

e

(a) (b)

Fig. 5. Experimental result of feature detection application. The camera is
moving along its X-axis. (a): Feature detection without the proposed texture-
enhanced event camera system. (b):Feature detection with the proposed
system.

information for corner detection as there is barely any motion
along the Y-axis, and thus hardly any events are created on
the horizontal edges. Fig. 5(b) shows the out of the proposed
system, which in this case can detect all corner features
accurately and robustly because of the introduced micro-
motions and the event compensation.

REFERENCES

[1] G. Gallego, J. E. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and
D. Scaramuzza, “Event-based, 6-dof camera tracking from photometric
depth maps,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 10, pp. 2402–2412, 2018.

[2] C. Ye, A. Mitrokhin, C. Fermüller, J. A. Yorke, and Y. Aloimonos,
“Unsupervised learning of dense optical flow, depth and egomotion
with event-based sensors,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, pp. 5831–5838.

[3] A. Mitrokhin, C. Fermüller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 1–9.

[4] A. Mitrokhin, C. Ye, C. Fermüller, Y. Aloimonos, and T. Delbruck,
“Ev-imo: Motion segmentation dataset and learning pipeline for event
cameras,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2019, pp. 6105–6112.

[5] J. H. Lee, T. Delbruck, M. Pfeiffer, P. K. J. Park, C.-W. Shin, H. Ryu,
and B. C. Kang, “Real-time gesture interface based on event-driven
processing from stereo silicon retinas,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 12, pp. 2250–2263, 2014.

[6] Y. Zhou, G. Gallego, and S. Shen, “Event-based stereo visual odom-
etry,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1433–1450,
2021.

[7] G. Cohen, S. Afshar, B. Morreale, T. Bessell, A. Wabnitz, M. Rutten,
and A. van Schaik, “Event-based sensing for space situational aware-
ness,” The Journal of the Astronautical Sciences, vol. 66, no. 2, pp.
125–141, 2019.

[8] Z. Ni, C. Pacoret, R. Benosman, S. Ieng, and S. RÉGNIER*, “Asyn-
chronous event-based high speed vision for microparticle tracking,”
Journal of microscopy, vol. 245, no. 3, pp. 236–244, 2012.

[9] H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza, “Evo: A
geometric approach to event-based 6-dof parallel tracking and mapping
in real time,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 593–600, 2016.

[10] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ul-
timate slam? combining events, images, and imu for robust visual
slam in hdr and high-speed scenarios,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 994–1001, 2018.

[11] J. Hidalgo-Carrió, G. Gallego, and D. Scaramuzza, “Event-aided direct
sparse odometry,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 5781–5790.

[12] A. Mishra, R. Ghosh, J. C. Principe, N. V. Thakor, and S. L. Kukreja,
“A saccade based framework for real-time motion segmentation using
event based vision sensors,” Frontiers in Neuroscience, vol. 11, 2017.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.
2017.00083

[13] A. Yousefzadeh, G. Orchard, T. Serrano-Gotarredona, and B. Linares-
Barranco, “Active perception with dynamic vision sensors. minimum

https://www.frontiersin.org/articles/10.3389/fnins.2017.00083
https://www.frontiersin.org/articles/10.3389/fnins.2017.00083


saccades with optimum recognition,” IEEE transactions on biomedical
circuits and systems, vol. 12, no. 4, pp. 927–939, 2018.

[14] K. Tyszka, M. Dobosz, and T. Bilaszewski, “Double wedge prism
based beam deflector for precise laser beam steering,” Review of
Scientific Instruments, vol. 89, no. 2, p. 025113, 2018.

[15] D. Senderakova and A. Strba, “Analysis of a wedge prism to perform
small-angle beam deviation,” in Photonics, Devices, and Systems II,
vol. 5036. SPIE, 2003, pp. 148–151.

[16] G. Gallego, H. Rebecq, and D. Scaramuzza, “A unifying contrast
maximization framework for event cameras, with applications to
motion, depth, and optical flow estimation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 3867–3876.

[17] E. Mueggler, C. Bartolozzi, and D. Scaramuzza, “Fast event-based
corner detection,” 2017.



APPENDIX

A. Fitting error analysis of micro-motion calibration

In our approximation of the light refraction for the rotation
wedge-prism, we approximate trajectory with a circle of
radius δ, instead of using different δi for different rotation
angles θi. Fig. 6 shows the results of a simulation for a wedge
prism with a refraction angle of 0.5 degrees. Simulating 640
by 480 event count image due to a 90-degree field of view,
the maximum error in this approximation is 0.09 degrees,
which is less than 2 pixels for the DVXplorer camera. This
approximation error is small enough that we can safely
ignore it for real-world robotics application scenarios.

Fig. 6. Illustration of the error introduced by calibration and compensation.

B. Discussion of the effect of micro-motions on moving
objects

Event cameras are designed to capture motion information
and are most interesting for applications when the camera or
objects are moving. For these scenarios, the motion at each
pixel in the image plane is a combination of our introduced
micro-motion and the 3D scene motion.

In the following Fig. 7, we qualitatively show the com-
bined effect of the object(a ball) motion and the micro-
motion. As we can see, the trajectory is circular when the
translation speed is 0 (static), because the motion is pure
rotational micro-motion. As the translational speed increases,
the trajectory goes from a circle to a sinusoidal path and
finally to an almost straight line, which means the proportion
of object motion in the overall motion gradually rises to
the dominant position. Because the effect of micro-motion
decrease with the object moving faster, the micro-motion
is more effective for scenarios involving a low or medium
speed ratio between the scene motion and our introduced
micro-motion. This is the case for most robotic applications
because our micro-motion can be around 20hz, and this is
much higher than the ego-motion of objects in most robotic
applications.

Fig. 7. Illustration of the coupling effect of introduced micro-motion
and the ego-motion on the trajectory of a solid circle. The micro-motion
is 1 degree per frame. (a): the ball is static. (b), (c), (d), (e): The ball is
translating with speed 1, 2, 4, 8, 10 degree per frame.


	Introduction
	System Design
	Hardware Design
	Micro-motion Generation
	Micro-motion Calibration and Compensation

	Experiment and Evaluation
	Evaluation for Feature Detection Application

	References
	Appendix
	Fitting error analysis of micro-motion calibration
	Discussion of the effect of micro-motions on moving objects


